
1/34

TOPS Systems Corp.

Architect, President & CEO

Yukoh Matsumoto, Ph.D.

July 12th, 2019

Challenges on Designing Parallel Processing
for Realizing Real-Time Applications

2/34

◼ Development Services / TOPS Systems
➢ Efficient Parallel Processing Software and Hardware

◼ Demand of Parallel Processing in Real-Time Systems
➢ ML, NW, 5G, Brake System, Free 3D View, Robotics Control

◼ Challenges on Designing Parallel Processing
➢ Free Lunch is over in 2005, but ...

➢ Many Performance Black Boxes in SW and HW

◼ Methodologies : Designing Time and Parallelism
➢ Models of Processing

➢ White Box Performance based Parallel Processing Design

◼ Architecture : Removing Inter-Core Overhead
➢ Communication and Synchronization

◼ Solutions

Agenda

3/34

My principle of Life

When we do our best, Ideas come up.

When we do incomplete, Complains come up.

When we are lazy, Excuses come up.

Takeda Shingen (1521-1573)

In Japanese,

一生懸命だと、智慧がでる

中途半端だと、愚痴がでる

いい加減だと、言い訳がでる

武田 信玄

When we do our best, Ideas come up!

4/34

Scalable
3D LSI Stacking

Parallel Processing
CPU/Processor

Software
Implementation

Vision & Technologies

Parallel Processing
Software Design

Next-Generation
System

Application/Algorithm

AI Camera

DeepPN
CoolParallel SDE

Tuning/Optimization Service

SMYLEvideo, SMYLEdeep/ZOMP
TOPSTREAM™ RTRT
TOPSTREAM™ Bus

Cool Interconnect

Today’s Talk : Designing Parallel Processing

Parallel Processing is a key at All Layers!

5/34

Development Services / TOPS Systems

Parallel
Processing

R&D

Training

Software
Design

Algorithm
Design

Processor
Design

Modeling
Simulation

Software
Tuning

Processor
Architecture

Today’s Talk : Ideas from experiences with customers

Training

Software
Design

Algorithm
Design

Modeling
Simulation

Software
Tuning

CPU GPU

FPGA MPSoC

SMYLEdeep

6/34

Demand of Parallel Processing in Real-Time Systems
Market Trend toward Parallel Processing

More than 90% of Hardware Platform is for Parallel Processing

Deep learning chipsets by type. Source: Tractica

7/34

Demand of Parallel Processing in Real-Time Systems

Visual Recognition/AI

Examples : Next-Generation Automotive

Efficient Parallel Processing is must for hight Performance and Energy-Efficiency

> 60fps

URLLC/5G

< 1ms

TSN/In Vehicle Network

~4k

~86GHz

FFT/Signal Processing

~32k-points

～ 96Gsps
~10Gbps

< 4μs/hop @ 1Gbps

8/34

Examples of Parallelization Requirements from Constraints for Edge

Metrics Unit FFT DNN 10GbE Security ISP

Performance

Computing
Floating TFLOPS １ n/a n/a n/a n/a

Integer TOPS n/a 1~10 1~ 0.01 1~

Memory Bandwidth GB/Sec 32 1~2 30 1.2 4~

Power Consumption W ~10 1～1.5 ~5 0.1 ~1

Chip Size Area @ 28nm mm2 100 50 100 10 50

Cost Device $ 50 50 50 1 3

Efficiency Hardware

Energy-
Efficiency

TFLOPS/W 0.1 n/a n/a n/a n/a

TOPS/W n/a 1 ~0.2 0.01 1

Area Efficiency
TFLOPS/mm2 0.01 n/a n/a n/a n/a

TOPS/mm2 n/a 0.02~0.2 0.01~ 0.001 0.02

Cost Efficiency
TFLOPS/$ 0.02 n/a n/a n/a n/a

TOPS/$ n/a 0.02~0.2 0.02~0.2 0.01 0.33

Other

Scalability

Maximum
Frequency

MHz 300 300 300 300 300

Parallel
Processing

Number of
Parallels

3k 3k~30k 3k 16 3kpixel

Note
Design
Consideration

1MFFT/s
~4096pnt
SingleFP
16Layer

Prallel FFT

30fps
Full-HD

Object Rec
GoogLeNet

AlexNet
Squeeze
RezNet

100Gbps
10port

Table Srch
QoS

TCP Mon.
Security

Data Comp

10Gbps
AES

n-bit Key
32x128 Mul

７Mpixel
120fps
Focus

White Ballance

Color Conv.

Demand of Parallel Processing in Real-Time Systems

3k-30k Parallel Processing is required to meet Performance and Efficiancy

9/34

Demand of Parallel Processing in Real-Time Systems
Edge Computing on Cyber Physical System (CPS)

Physical

PhysicalCyber

CPU GPU

FPGA MPSoC

Sensor

Actuator

Real-Time System

Throughput
Latency
(Worst Case)

Parallel Processing

Efficient Parallel Processing on Edge Devices for High-Throuput and Low-Latency

10/34

Demand of Parallel Processing in Real-Time Systems
Real-Time System vs. General Purpose System

Processing of Real-Time system is type of Stream Processing based on Dataflows

Real-Time System General Purpose System

Continuity Yes No

Deadline Exist None

Predictable
Response Time

Must No

Data Used Immediately Used by Processing Order

Type of Processing Stream/Dataflow Batch/Multi-Thread

ActuatorSensor

Processing

P
ro

c
e
s
s
in

g

Output

Input

11/34

Challenges on Designing Parallel Processing

Very hard to utilize potential performance of CPU, GPU, FPGA

#1. Free Lunch is over, but still stick with sequential programming

#2. Almost No-Effort on Software Design

#3. Lack of Expression of Timing and Parallelism in Design tools

#4. Many Performance Black Boxes in Software and Hardware stack

#5. Limited Scalability in Hardware Platform

What currently facing in the industry

12/34

No Free LunchEra of Free Lunch

Challenges on Designing Parallel Processing
Free Lunch is over in 2005, but ...

#1. Free Lunch is over, but still stick with sequential programming

 Change the meaning of programs
far more than optimizations

■Conventional
Programs for Functionality
・Single Program（CPU）
・Huge Memory
Optimizations of Implementation
・Mostly by Compiler

■After Free Lunch
Programs for Performance
・Multiple Programs（Multiple CPU）
・Multiple Memories (Distributed)
Optimizations of Design
・Consider Time and Space

 Change the Characteristics of CPU
Conventional Software maybe slower

13/34

Challenges on Designing Parallel Processing
What optimization required after “Free Lunch is Over”

Optimize Algorithm

Optimize Design

Optimize Program

Optimize by Compiler

Optimize by Library

Optimize for Target

Optimiza for Dynamic

・Choose Algorithm optimum for parallel resources on target
hardware, such as ALU/MAC, mem, and comm./sync capability.

・Parallel Processing Structure optimum for target hardware
・Optimize Design for parallel resources on target hardware

・Modify Source Code for optimizabtion by compiler

・optimization algorithms for sequential code

・Use optimum library that code has pre optimized for sequential
performance, such as Math, signal processing, DNN.

・Fully utilize special resources and features on target hardware,
such as special instruction, register-files, DSP, e-Memory

・Dynamically utilize resource on target hardware, such as
CPU utilization, SuperScalar, $ hit rate, Branch Prediction Rate.

Source

Code

Executable

Specification

Design :Optimizations Required for Parallel Processing

#2. Almost No-Effort on Software Design

Program :Optimizations for Sequential Processing

14/34

Challenges on Designing Parallel Processing
Many Performance Black Boxes in Design Methodologies

Specification

Compiler

Assembler
Synthesis

P&R

CPU・GPU

(Parallel)

FPGA
(Parallel)

Mem

I/O

Hardwired

Logic
(Parallel)

FPGA HLS

HW/SW
Partitioning

Synthesis
P&R

ASIC HLS

C,C++, OpenCL, Cuda

Assembly Code Structural RTL Structural RTL

bitstream GDS II

C,C++, OpenCL

Untimed C(OpenCL, SystemC）

No Parallelism
in Time & Space

Algorithm Lack of Timing & Parallelism

Semantic Gap
between Languages

RA
(Parallel)Executable Code

#3. Lack of Expression of Timing and Parallelism in Design tools

SLX

Symplify

Equivalanecy Formality

Debug Single Tap

LEC
360 EC

HLS Compiler

FLX Compiler

MAX Compiler

Catapult

15/34

Challenges on Designing Parallel Processing
Performance Black Boxes = Unpredictable/Uncontrollable Execution Time

◼ Software
➢ Number of Instructions

 Compiler Optimization
 Interrupt
 Scheduling/OS

◼ Hardware
➢ CPI

 Instruction Cache Miss
 Data Cache Miss
 Branch Prediction Miss
 Super Scalar Scheduling
 Inter-Core Synchronization

➢ Cycle Time
 Dynamic Frequency Scaling

#4. Many Performance Black Boxes in Hardware stack

16/34

How to approach the challenges

17/34

Methodologies

Exploiting Coarse-Grained Task, Data, and Pipeline Parallelism in Stream Programs

Michael I. Gordon, William Thies, and Saman Amarasinghe, MIT

CPU

GPU

CPU

GPU

C/C++

CPU Multicore SMYLEdeep

Programming Model
DeepPN

OpenCL/Cuda TensorFlow/OpenVX

Dataflow allows easy extraction and optimization of spatial parallel processing

Utilizes all types of Parallelism inherent in Applications

CPU

GPU
GPU

Machine Learning

Real-Time
Applications

Fine-Grain Dataflow

FIFO

5G Signal Processing

18/34

Methodologies
Basic Model of Processing

Execution Time = function(input, parameter, state)

・Input: Byte
・Output: Byte
・Parameter: Byte
・State: Byte
・Logic: Number of Inst.
・Execution Time: Cycles

Conventional Expression
◼ Flow Chart, Sequence Diagram

Issue : Implicit Performance information
➢ No Data Size
➢ No Data Dependency
➢ No Timing

Quantitative Expression

Basic Model

19/34

◼ Issues：Current Programming limits Parallel Processing

◼ Objectives: Define how to express parallel processing exlicitly

➢ Easy to Express parallelism inherit in Real-Time Applications

➢ Easy to speed-up Real-Time applications by optimization of

 Efficient Parallel Processing

 Less Memory Access

 Simple Communication

 Simple Synchronization

 Deterministic

 Stream Processing

◼ DeepPN (Deep Process Network)

19

Methodologies

DeepPN : Dataflow Graph, Hiearchy, Gobal Variable

Model of Parallel Processing : DeepPN

Time

Time

Time

Time

Time

Time
Time

Time

Time
Time

Time

Time

Time

Time

Time
Time

Time

Time
Time

Time

Time

Time

Time

Time
Time

Time

Time
Time

Time

Time

Time

Time

Time
Time

Time

Time
Time

Time

Time

20/34

Methodologies
Model of Parallel Execution Time

Internal Proc. Comm Sync

Internal Proc. Comm Sync

Internal Proc. Comm Sync

Internal Proc. Comm Sync

Internal Proc. Comm

Internal Proc. Comm

C0

C1

②

◼ Parallel Execution Time
① Internal Processing ; ALU, Memory(LD, ST), Branch
② Inter-Core Conflict ; Shared Memory Access
③ Inter-Core Communication ; Data Transmit and Receive
④ Inter-Core Synchronization ; Wait for Lock, Barrier

①

③ ④

ALU MEM BR

For faster processing, minimize each by design optimization

Time

21/34
Methodologies

For Predictable/Controllable Processing Execution Time

Cycle Time

Number of
Instructions

CPI

CPU clock frequency

Special Instruction

Compiler/Library

ALL

ALU

LD/ST

BR

Instruction Cache

Super Scalar

Instruction Selection

Data Cache

Memory Mapping

Branch Prediction

Loop Optimization

Function Call

Event
Control

Interrupt

Execution
Time

Mutual Exclusion

Synchronization

Practical
Goal

Ideal
Goal

Instruction
Cache Hit

>98%
100%

w/o Cache

SuperScalar 1.5
Fixed
Static

Data
Cache Hit

>96%
100%

w/o Cache

Branch
Prediction Hit

>98%
100%

w/o BP

Simple Addressing

Static Dynamic

Control and Predict Dynamic Behavior

Control CPI

22/34

Methodologies
Modeling & Simulation of Parallel Processing Performance

Design Phase : Quick Modeling with ±20% of Accuracy

Computation
（Processor Cores）

Communication
(Bus & Memory)

Sequential

（untimed）
Parallel

(untimed)

Parallel

（Estimated timed）

Parallel

（Instruction

Accurate）

untimed

Transaction

Level

Cycle

Accurate

Parallelization
Sequential

Software

Parallel

Software

・Algorithm

・Annotation（C)

・Instruction Mix

・CPU Model

・Real System

・RTL Model (Slow)

・ISS(QEMU)

・ARMulator

・HW&ISS Model

・HWA&SW ModelIssue：
AccutateCache Model

Issue：
Accurate CPU Model

Parallel

（Cycle Accurate）

・VisualSim

・SystemC

Performance
Profiling

(Vtune,Streamline)

Estimated

・SHIM(Static

・HW&SW Model

・DFG Based

Compile

・HWA&ISS Model

・Matlab/Simulink・C/C++

23/34
Methodologies

TOPS Systems plan to provide Guideline and Tools

Guidelines
for

Parallel
Processing Tools &

Modules

Application
（Samples）

Modules & Libs
DeepPN

Parallel Processing
Design Environment

Parallel Processing
Implementation Environment

DFG

DFG

DeepPN Programming Model

Design

Implementation

Neural Network

Image Filter

3D Recognition

DeepPN API

SHIM*

DFG

IM
64kB

DM
1MB

TOPSTREAM™ e-bus (16-bit)

QVP
256-bit

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

QVP
256-bit

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

QVP
256-bit

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

QVP
256-bit

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

QVP
256-bit

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

QVP
256-bit

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

QVP
256-bit

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

QVP
256-bit

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

r-bus r-bus r-bus r-bus r-bus r-bus r-bus

i-
b

u
s
 (

1
2
8
-b

it
)

IM
64kB

i-
b

u
s
 (

1
2
8
-b

it
)

IM
64kB

i-
b

u
s
 (

1
2
8
-b

it
)

IM
64kB

i-
b

u
s
 (

1
2
8

-b
it

)

IM
64kB

i-
b

u
s
 (

1
2
8
-b

it
)

IM
64kB

i-
b

u
s
 (

1
2
8
-b

it
)

IM
64kB

i-
b

u
s
 (

1
2
8
-b

it
)

IM
64kB

i-
b

u
s
 (

1
2
8
-b

it
)

TOPSTREAM™ d-bus (256-bit)

IPU

TOPSTREAM™ s-bus (256-bit)

AMBA APB (32-bit / 256-bit)

HRU HTU LED

GPU SMYLERT

DFG

Guidelines and Tools

24/34
Architecture

Decrese Computing Time and Increase Energy-Efficiency

Tightly Coupled Multi-ISA cores optimum for Efficient Parallel Processing

Theory for Decrease
Computing Time

Break Down
Traditional
Approaches

SMYLEdeep’s
Approaches

Less Cycle Time Clock Frequency High Clock Rate(GHz) Low Clock Rate(100MHz)

Less Number of
Instructions

ALU SIMD(8-32packed) Special(-768operations)

Load Single, Block Less, Stream(No Latency)

Store Single, Block Less, Stream(No Latency)

Branch Bcc, Jmp, Call/Ret Bcc, Jmp, Call/Ret

Communication Store & Load None

Synchronization Lock None(Prefix)

Less CPI
(Clock per Instruction)

Cache Instruction/Data Instruction/Large RegFile

Super Scalar -4way None

Branch Prediction Yes(due to deep pipe) No(shallow pipeline)

ZOMP

Computing
Time

Cycle Time

Number of
Instructions

CPI

Increase Energy-Efficiency

↓

↓↓

↑ ↑

25/34
Architecture

Goal : Increase Parallel Protion and Minimize Overhead

Common Issue on Parallel Processing

Parallel Portion
100%

XX%

26/34

Architecture

Remove Overhead due to Inter-Core Communication and Synchronization

Zero-Overhead Message Passing (ZOMP)

Internal Proc. Comm Sync

Internal Proc. Comm Sync

Internal Proc. Comm Sync

Internal Proc. Comm Sync

C0

C1

②

①

③ ④

Time

Core Core

Memory

◼ Traditional Parallel Processing

C0 C1

◼ SMYLEdeep: Closely Coupled Special Multi-core

New
Core

New
Core

Memory

C0 C1

Internal Proc.

Internal Proc.

Internal Proc.

Internal Proc.

C0

C1

①

Time
Number of Core

P
e
rf

o
rm

a
n

c
e

CPU, GPU

SMYLEdeep
(ZOMP)

Due to inter-core
Comm. and Synch.

27/34

Architecture

C
lo

s
e
 c

o
u

p
lin

g

Mem

Core１ Core2

Store Sync Load

Core１ Core2

Register
File

C = A ×B
Steps for Sync
ST
Steps for Sync
・・・・

・・・・
・・・・
・・・・
Steps for sync
LD
F = C × D
・・・・

SYNC：C = A × B
・・・・
・・・・

・・・・
SYNC：F = C × D
・・・・

※Only prefix-instruction (SYNC☺ is required
for inter-core communication and synchronizatin

Zero Cycle required

Two Prograns can communicate and synchronize with Zero Cycle!

ZOMP
Communication by RF sharing
Synchronization through Event bus

Register
File

More than 100 cycles required

No Store-Load for communication and No Lock required for synchronization

Sync

Register
File

Register
File

Register
File

ALU

Register
File

ALU

Traditional Multicore

Sync

ALU ALU

28/34

Architecture

ZOMP enables Scalability and Efficient Parallel Processing

You can scaler performance of Multicore linearly with number of cores

◼ Zero Overhead cycles for Inter-Core Communication
➢ You can reduce number of ST/LD instructions

◼ Zero Overhead cycles for Inter-Core Synchronization
➢ You can remove LOCK instructions for mutual exclusion

◼ Increase Parallel Portion of Multicore Software
➢ You can apply Fine Grain partitioning for more parallel portion

◼ Enable Efficient Dataflow Processing on Multicore

PE0

PE1

PE2

PE0

PE1

PE2
Parallel Portion Parallel Portion

Coarse Grain

Minimum Grain can
be single instruction

・Many Memory Access

Fine Grain

・Few Memory Access

Traditional Multicore Multicore with ZOMP

29/34

Architecture : SMYLEDeep
Tightly Coupled Cores for efficient parallel processing

IM

Data
Memory

TOPSTREAM™ e-bus (16-bit)

PE

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

PE

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

PE

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

PE

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

PE

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

PE

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

PE

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

PE

DRDRDRDR
DRDRDRDR

Super EX

B-ISA V-ISA

r-bus r-bus r-bus r-bus r-bus r-bus r-bus

i-
b

u
s
 (

1
2
8
-b

it
)

IM
6

i-
b

u
s
 (

1
2
8
-b

it
)

IM
6

i-
b

u
s
 (

1
2
8
-b

it
)

IM

i-
b

u
s
 (

1
2
8

-b
it

)

IM

i-
b

u
s
 (

1
2
8
-b

it
)

IM

i-
b

u
s
 (

1
2
8
-b

it
)

IM

i-
b

u
s
 (

1
2
8
-b

it
)

IM

i-
b

u
s
 (

1
2
8
-b

it
)

TOPSTREAM™ d-bus (256-bit)

IPU

TOPSTREAM™ s-bus (256-bit)

AMBA APB (32-bit / 256-bit)

HRU HTU LED

#5 Scalable and Deterministic Hardware Platform

Stream Processing

30/34

Architecture
Parallel Processing on SMYLEdeep

◼ Task Parallel

➢ Each core executes different tasks independently with MIMD

◼ Data Parallel

➢ Each core execute same code as SIMD

◼ Pipeline Parallel

➢ Each core executes different tasks independently with MIMD

and pass the output to next core through R-bus with zero cycle

◼ Mixture of Task, Data, Pipeline processing

Applicable to type of Real-Time Applications

31/34

Cycle Loop Kernel Application Design Time
Time

Space

Gate

ALU/MAC

Chip

ASIC
GPU/
CPU

FPGA

CPU
+

Reconfig

Multi-CPU
+

Reconfig

Datapath
Synthesis

Reconfig
DSP

Types of Hardware Architecture
Utilize Advantage of configurability in Time and Space for Parallel Processing

SMYLEdeep: Tightly Coupled Parallel Processing Architecture

Core

SMYLEdeep

32/34

Solutions

We provides services and products for “Highly Efficient-Parallel Processing”

#1 Top down design with Time and Parallelism
➢ Avoid troublesome exploration of parallelism at implementation

#2 Intensive Software Design prior to programming
➢ Migrate to explicit Processing Model
➢ Provide Parallel Software Design Guideline and Software Tools

#3 Structural coding of Parallelism
➢ Shifting to modules according to Dataflow

#4 Design Optimization based on White Box Performance
➢ Quantitative Performance Analysis and Estimation
➢ Remove Unpredictability / Uncontrollability

#5 Scalable and Deterministic Hardware Platform
➢ Provide SMYLERT for optimum and efficient real-time processing

33/34

Changes

from Programming to Software Design

from Shared Memry to Direct Inter-Core Comm.

Toward Efficient Parallel Processing

34/34

Looking for Academic and Industrial Partners

to provide solutions for WW MPSoC users!

Go Next Generation

yukoh@topscom.co.jp

